Mutation analysis in spinal muscular atrophy using allele-specific polymerase chain reaction.
نویسندگان
چکیده
Polymerase chain reaction (PCR), followed by restriction digestion is universally used for molecular diagnosis of spinal muscular atrophy (SMA). In the present study, we have used a modified strategy based on amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) to develop a rapid and reliable method for mutation detection and prenatal diagnosis in SMA patients. The telomeric (SMN1) and centromeric (SMN2) copies of exon 7 of the survival motor neuron (SMN) gene were amplified by ARMS-PCR, using primers specific to SMN1 and SMN2 nucleotide sequence with the exonic mismatch G (for SMN1) and A (for SMN2) at the 3' end. The PCR products were analyzed on agarose gels. All the patients who had homozygous deletion of exon 7 of SMN1 gene by conventional PCR-restriction fragment length polymorphism (PCR-RFLP) method showed the same deletion status by ARMS-PCR. This procedure showed a 100% concordance between PCR-RFLP and ARMS-PCR methods for the detection of SMN1/SMN2 status in patients with SMA. An artifact due to incomplete digestion is not a problem while using ARMS-PCR. The modified protocol is specific, rapid and highly reliable for use in prenatal diagnosis as well.
منابع مشابه
Molecular analysis of SMN1, SMN2, NAIP, GTF2H2, and H4F5 genes in 157 Chinese patients with spinal muscular atrophy.
Spinal muscular atrophy (SMA) is a common and lethal autosomal recessive neurodegenerative disorder, which is caused by mutations of the survival motor neuron 1 (SMN1) gene. Additionally, the phenotype is modified by several genes nearby SMN1 in the 5q13 region. In this study, we analyzed mutations in SMN1 and quantified the modifying genes, including SMN2, NAIP, GTF2H2, and H4F5 by polymerase ...
متن کاملDetection of spinal muscular atrophy carriers by nested polymerase chain reaction of single sperm cells.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder with a carrier frequency of approximately 1 in 40. Approximately 95% of patients have homozygous deletions of exon 7 and/or 8 of the SMN1 gene. Carrier testing for SMA is relatively complex and requires quantitative polymerase chain reaction (PCR) of genomic DNA to determine SMN1 copy number. The purpose of this study was to asses...
متن کاملDiagnosis of spinal muscular atrophy in an SMN non-deletion patient using a quantitative PCR screen and mutation analysis.
We report a child with clinical findings consistent with Werdnig-Hoffmann disease (spinal muscular atrophy type I) who was found not to have the homozygous absence of the survival motor neurone (SMN(T)) gene observed in approximately 95% of spinal muscular atrophy patients. A quantitative PCR based dosage assay for SMN(T) copy number showed that this patient possessed a single copy of the SMN(T...
متن کاملCongenital contractural arachnodactyly with neurogenic muscular atrophy: case report.
We report the case of a 3-(1/2)-year-old girl with hypotonia, multiple joint contractures, hip luxation, arachnodactyly, adducted thumbs, dolichostenomelia, and abnormal external ears suggesting the diagnosis of congenital contractural arachnodactyly (CCA). The serum muscle enzymes were normal and the needle electromyography showed active and chronic denervation. The muscle biopsy demonstrated ...
متن کاملDeletion of SMN and NAIP genes in Korean patients with spinal muscular atrophy.
Childhood-onset proximal spinal muscular atrophies (SMAs) are an autosomal recessive, clinically heterogeneous group of neuronopathies characterized by selective degeneration of anterior horn cells. The causative genes to be reported are survival motor neuron (SMN) and neuronal apoptosis inhibitory protein (NAIP) genes. The deletion of telomeric copy of SMN (SMN(T)) gene was observed in over 95...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Indian journal of biochemistry & biophysics
دوره 40 6 شماره
صفحات -
تاریخ انتشار 2003